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What Is Big Data?

* The nature of big data comes from the complexity of the data and the mechanisms required to bus the data,
analyze it and find insights from it.

» Several initiatives have been established to define what we mean by big data (such as NIST BDWG (NBDIF
2015), Ward& Barker (2013), Bayer & Laney (2012). They highlight these parameters as the V’s of big data.
There are 3-7 or more of these V’s based on the different types of definitions, as shown in the figure 4.1

* In some cases data which may not be particularly large but has many of these other qualities such as
variability, variety, and value may also be considered big data.

* The term Big may refer to the big aspect of the overall complexity of the data. If a dataset is highly unusual in
terms of its complexity it may quality as big data under one of the big data qualities.

e Cubersecurity domain
* Pure network data traffic - it is massive, for example in a mid-size organization it can range into petabytes per second.

* Internet of things - the complexity of data is based on the velocity and variety and in some cases also the volume. One
example is a sensor network which generates a constant stream of data originating from multiple sensors over time
producing a high variability in the data due to the environmental factors.

* The value from these big datasets can be derived by sifting through these complex datasets to derive
insightful patterns.



Big Data -V

* Big data does not just refer to the Volume or size
of the data

e Data can be complex and have the following
gualities:

velocity- generated at a rapid pace,
variety-consist of multiple types of heterogeneous data,

veracity-provide trustworthy insights into the domain
function,

value-may be able to generate revenue or provide other
benefit,

venue-be dynamic with respect to the location, volume-
large amounts being generated,

variability-some aspect of these changing over time.

Velocity

_

Variability

Volume

\
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Internet Users

According to the world fact book maintained by the CIA
(Factbook 2017) the number of internet users is now in the
billions.

The top 25 countries in terms of the internet users.

Vast number of users on the internet are generating traffic from
computers, mobile devices, things/other devices.

The network traffic data is truly complex in terms of the variety
of the data generated, volume of the data and velocity by which
it is generated.

There are also organizations which are generating the data and
network traffic.
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Attacks Sourced from Countries

While majority of the attackers may come from countries with majority internet
users, in addition, they may also come from the countries with fewer internet
users.

e For example, number of internet users in Lithuania is roughly 1/3rd of the United
States and is 97th in the list of ranked countries by number of internet users. Despite
of this Lithuania is still placed 8th in terms of the countries sourcing cyber-attacks.

Clefa]\crly the amount of internet traffic generated is not an indicator of attack
traffic.

There are other factors at play in identifying cyber-attacks on the larger world
stage taking into account not only the internet traffic but socio-political factors,
crime rates, other cyber-attacks.

* For example, a simple search of Lithuania and cyber-attacks reveals that Lithuania is 120,000,000
also at the receiving end of many major cyber-attacks. More recently, Lithuania led a
cyber shield exercise to practice procedures for protecting the cyber infrastructure
(L24, 2016). Thus, it is not clear whether the sourced attacks, where Lithuania is
ranked 8 across countries in the 4th quarter of 2016, are more defensive or offensive. 100,000,000

It is clear that a deeper dive can reveal a lot more insights into the real state of

affairs on the internet.
80,000,000 -

If we consider an organization and study trends of usage and simple rules to
analyze traffic we may miss insights of potential advanced persistent threats.
60,000,000 -

Such threats can be evaluated by not just looking at data in isolation but in
combination with user behaviors, socio-political factors, context of time and W Attacks

potentially many other contextual features.
40,000,000 -

This is truly a big data problem as it brings in the volume, velocity, variety,
variability, and venue and can lead to great value with high veracity of the

results. Here testing the veracity is equally important to generating value. 20,000,000 -
The challenge is to sift through the internet traffic and identify attacks. This can
be at the device level, user level or the network level at large. . .
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Landscape of Big Data Technologies

smmeme  Big Data technologies can be selected based on criteria that fit a business need

e |atency in response time,

e whether the data is structured, if a SQL like environment is required,
e types of analytics required,

e specific types of visualizations that may be needed and

e the security and privacy needs of the business.

mmmmmm Big Data technologies can be selected based on these criteria.

e For example if the need of the business is low latency and SQL like processing then those tools can be
selected which have a quick turnaround time for queries in massive datasets.

e Of the several big data analytics frameworks present in the market, the business can select the tools that
provide Massively Parallel Processing (MPP) such as engines on top of Hadoop that have high SQL like
functionality and portability such as Apache Hive, Facebook Presto, Apache Drill, Apache Spark.

e Qut of these Presto and Spark have been shown to produce better outcomes for SQL like processing.




ig Data Technology Selection-Factors
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Complex Nature of Data

The premise of achieving a high level of analysis and mining in big data, is a good understanding of the nature and
complexity of the data

Mining in large heterogeneous data is increasingly becoming challenging due to the complexity of the data
Many data mining algorithms have been proposed for small datasets
The nature of the data itself renders a challenge to the data mining

Mainly such problems can be exemplified in the mining of high dimensional data sets

The quality of the mining results is affected adversely as the number of dimensions increases. Here dimension refers to
the attributes of an object

Outlier detection i.e. the identification of anomalous objects

¢In higher dimensions data becomes sparse, points tend to become equidistant.

*This adversely affects the methods based on density of points, unless data follows certain simple distributions.
*The outliers could be hidden in high dimensions.

eFor outlier detection a subset of the entire attribute set could be used to detect or indicate the outliers.

10/2/2022 12
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Nature of Data: Spatial Data

» Spatial data mining deals with identification of non-trivial and useful knowledge discovery in spatial database where spatial (point, lines,
polygons, location, pixel data) and non-spatial data, e.g., population count are stored

* Unlike traditional data mining it is important to address the nature of spatial data, which renders new challenges in the inherent spatial
autocorrelation and heterogeneity in the data. Spatial data is seen in the cybersecurity domain in sensor networks placed in a region

* These are particularly relevant to cyber physical systems which have interactions with several physical sensors which are impacted by the regional variables and also non
spatial elements such as the computer networks involved in the communication and analysis of the data.

+ CPS provides a very comprehensive example of how the cyber elements interact with the physical elements such that to perform any type of knowledge discovery the physical
elements along with the environmental variables impacting the physical locations need to be modelled correctly.

» Spatial data poses more of a challenge due to the type of data, volume of data and correlation between the objects and their neighbor or
neighborhood

» There can be relationships between spatial objects like topological relationships, direction relationships, metric relationships or complex
relationships, which are based on these basic relationships.

« The data could depict temporal changes, which is inherent in the data itself.

» The same spatial data can also be represented in different ways i.e., raster and vector format. For example, georeferenced data, includes
spatial location in terms of latitude, longitude and other information about spatial and non-spatial attributes

» Spatial data can benefit cyber security applications in characterization of the region with socio-economic data and cybercrime data
« This characterization can help determine which cities, areas, or countries may be more likely to send a malicious request

» Spatial data can be utilized to produce a cyber-security map which can combine several data streams and provides a geospatial interface
to visualize the location of cyber activity



Nature of Data: Graph Data

Graphs represent a set of nodes and links between the nodes

With the proliferation of computer network data graphs are becoming massive in size and are constantly
evolving

e Example 1: Nodes can be IP addresses and the links can be the packets or communication sent between the two IP addresses.
e Example 2: Router network where the nodes are routers and links are the possible paths from the router table.

This is an example where big data techniques can facilitate the discovery of novel insights

* For example, how does a graph for a computer network traffic change over time in terms of node level and graph level
properties can help determine potential events

e If a node is highly connected it is an important node
e We can study the behavior of the network data weather it increases the diameter of a graph or density of the graph

* These properties have direct implications on managing the networks, identifying critical events such as cyber-attacks and
evaluating the impact of events on the graphs



Where Does Analytics Fit in for
Cybersecurity?

Traditional cybersecurity methods looking at network traffic data focus on Intrusion

detection which aims at identifying threats of unauthorized access using signatures of
unauthorized access or attacks

Data Analytics can go beyond this signature based discovery to identify complex types of

attacks which may be hidden in massive datasets or may be spread out over time and
multiple networks

Some examples which show the need of using big data analytics in cybersecurity:

e Sampling based change discovery in massive networks (Namayanja ET. Al 2015)
e Big Distributed Intrusion detection system (Janeja ET. Al. 2014)



Change Detection in Massive Traffic Datasets

Computer networks can be seen as graphs of
communications between nodes, where each node is
represented by an IP address

Consider a snapshot of network traffic data - generate a

communication graph from it

We can evaluate whether there have been node level or

network level changes in the graphs indicating potential
cyber-attacks




Change Detection-
Example

Given that network communication can be very massive it is important to
identify subset of this traffic to evaluate

This can be done by targeted sampling, one way is to select the top central
nodes where nodes with very high degree of connectivity represent the major
communication in the traffic data

» Ifthese central nodes are consistent through time, represented by bins
or intervals of time, then we can say that these nodes are consistent.

If these nodes are not present in all time periods then they are
inconsistent nodes.

If there are time periods where several of the central nodes become
inconsistent then this time period is a potential time point where an
event affected these nodes and may require further investigation

The sub graphs for the time intervals can also be studied to evaluate
graph level properties

If the densification or diameter does not follow the network properties
during time periods it can again be an indicator of a network level
event at the time points

Node Selection

1. Random Temporal Network Snapshot
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Change Detection- Example

» Let us consider the graphs across three time periods where the degrees of the nodes
« Each graph represents a set of communication lines between the IP nodes
* Note that here the degree is based on the non-duplicate edges

» This can be modified to a weighted degree to count for multiple times the nodes communicate with each other, for
accommodating duplicate edges

« Alternatively edge weight can be added for the number of times the nodes are communicating
» For simplicity we only consider the non-duplicate communications

» We can see that certain nodes (a, d, e) are consistently central if the degree threshold for centrality is greater than or equal to
two. On the other hand we see that node ‘f’ is consistently low degree

» Node ‘b’ starts as a high degree but is dropped in time period T2 and again comes back as a low node degree in T3

« The consistent nodes a, d, e can be seen as the regularly used nodes if they are consistently central

 If such consistent nodes get dropped after being consistent in several time periods then this can prompt further analysis
» |If several nodes lose their degree in a time period then we can also label that time period to prompt further evaluation

« This process helps identify central nodes over time to evaluate any unusual changes in the communications
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Parallel Graph
Analysis
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Multipronged Attacks

Multi-pronged attacks are attacks which are spread out over time and several points in the
network. Discovering such attacks becomes a challenging task particularly because the datasets
become massive and heterogeneous

Distributed Intrusion Detection System (dIDS) provides the infrastructure for the detection of a
coordinated attack against an organization and its partners’ distributed network resources

Given the complexity of multiple attack sources and the massive amounts of data generated for
such a multi-pronged attack, a multi-level mining framework can be utilized

Example architecture utilizes IDS logs to sift through alarms which may look benign individually
but may indicate a critical alert in combination with other alerts



Distributed IDS
alarm Scenario

* In this distributed environment within each subnet a dIDS agent
ﬁ:?éf?rrr}%lé)cal intrusion detection and generates IDS log data as
...IDSn

» Log data from each dIDS agent is sent to a control center,
employing big data tools, where it is stored for aggregated analysis

» Each signature-based agent generates a priority level associated
with the alarm when an attack against a known threat is detected,
and generates high, medium and low priority alarms for
‘anomalous’ behavior

+ High priority alarms can be clearly labelled, however the low and
medium priority alarm data is very large making it difficult to
perform manual analysis by an administrator

* Insuch a scenario, several alarms which are part of a coordinated
attack will be missed

» If we can show that the high level alarms have similarities with low
level alarms we can propagate the labels to the low level
alarmsOnce we label them as similar to high level alarms we can
try and study them carefully for possible breaches which are part of
a coordinated attack.

IDS 1 IDS 2 IDS 3 IDS 4 IDS n

Big Data Storage and processing

Clustering and Labelling IDS Alarms

Training set Generation through Selective Sampling

Ensemble Learning

Analytics Engine Multi-Pronged Attack Prediction
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« These alarms may range from abnormal traffic, unusual port access, and unusual sources

« The key idea here is to connect the anomalies using co-occurrence of alarms at specific time periods, specific location
(node/computer) or similar abnormal behavior

« This essentially identifies which have overlaps or similarities in terms of some of the features

* How do we find similarities?

« This can be done through clustering the alarms together and if alarms fall in the same cluster then the labels from a higher level alarm can be
propagated to a lower level alarm

+ Once we have these propagated labels, after domain user validation, we can use this data for future predictions as well

 Let us consider each agent to provide a training set which is generated after preprocessing the data through a
clustering algorithm

» Then classification in this data can be seen as a class imbalanced learning problem

» This approach uses an ensemble classification technique to automatically classify the large volume of aggregated
alarm data and to alert a system administrator to a potential coordinated attack



Privacy and Security Issues in Big Data

Combination of multiple
datasets

Scalable and efficient
High Value

Handling complex datasets

Several technologies
available

Big Data

Loss of Privacy

Security
Veracity must be ensured

Domain insights needed to
handle heterogeneous
datasets

Lack of standardization and
user training
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